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An Efficient Algorithm for the Calculation of

Parasitic Coupling Between Lines in MIC’S
John M. Dunn, Lincoln Cole Howard, and Kent Larson

Abstract-A new algorithm is developed to calculate parasitic

coupling between transmission lines in an efficient manner. The
algorithm works by using the currents and voltages on the lines
in the absence of parasitic to calculate independent voltage

and current sources which then give the approximate coupling
strength between the various lines. These sources are easy to

place in a CAB circuit program. The algorithm is demonstrated
on a double-stub filter structure. The observed splitting of the
resonance, for this particular example, is modeled by using

dependent sources, as calculated from the independent sources.

I. INTRODUCTION

PARASITIC coupling is becoming more of a concern in

microwave integrated circuits (MIC’s) as packing densi-

ties of components are increased and frequencies are pushed

higher. By parasitic coupling, we mean unintended electro-

magnetic coupling between two components in the circuit.

Such coupling can have a deleterious effect on the circuit’s

performance.

The effects of parasitic coupling are not included in com-

mercially available circuit simulators at this time. These sim-

ulators are based on microwave network theory concepts, and

they therefore only include the interaction between two circuit

elements if it is specified by the designer. For example, two

parallel transmission lines are assumed not to be coupled

unless the designer explicitly puts a coupled line model into the

circuit. The designer is faced with two problems when trying to

include parasitic coupling effects in the circuit design. The first

issue is how to determine the strength of the coupling between

two elements; the second issue is how to incorporate this

effect back into the computer-aided design (CAD) software

in a reasonable manner.

One approach that has been tried with some success is to

numerically calculate the coupling between the two elements.

Typically, the designer inputs the geometry of the two elements

into one of the commercially available, full-wave, numerical

simulators. The designer obtains an S -parameter file for

the frequencies of interest, which is then inserted into the
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circuit simulator. The coupling effect between the two ele-

ments is then included. These simulators numerically calcu Late

Maxwell’s equations. They, therefore, potentially can include

all electromagnetic effects. This goal must be tempered by

realistic numerical accuracy limitations, and possible system

limitations of the specific simulator used. This approach has

two major problems. The first is that circuit simulators are

computationally very intensive. Typically, these simulators

take several minutes of computation time for each frequency

point of interest. The designer is therefore discouraged from

calculating parasitic coupling in this manner. The second prob-

lem is that the designer gets very little intuitive feeling about

how important the coupling is to the circuit’s performance.

This is a problem if one is trying to correct a parasitic problem

or determine its origin in the circuit.

In this paper, we develop an algorithm for calculating

parasitic coupling between transmission line elements. The

main advantages of the algorithm are that it is quick to

implement, and can give the designer an intuitive feeling of the

levels of coupling to expect. The formulas are approximate,

and therefore subject to a number of limitations. First of all,

the algorithm is only developed for microstrip transmission

lines. It should be possible to extend it to other transmission

line structures. The calculation of coupling between structures

which are not transmission lines is outside the scope of the

algorithm. Second of all, the algorithm assumes that the lines

are far enough apart that the coupling is a small effect.

Parasitic is considered hereto be a perturbation on the circuit’s

performance. By this, we mean that the currents and charges

on the two lines without coupling included can be used as an

ititial guess for insertion into the algorithm. This is usually

the case in realistic examples. If the coupling is so strong

that this assumption is not true, the algorithm may behave

poorly.

The algorithm is developed in the next section. It is based

on transmission line theory and the inclusion of first-order

coupling effects. The effect of coupling is included in the

CAD program by inserting independent voltage and current

sources in the transmission lines. The third section of the palper

demonstrates the algorithm on a coupled-stub structure, This

example has been discussed a great deal in the literature. It is

known to be a good example of parasitic coupling effects [1].

The algorithm gives coupling of the right strength. It does not,

however, produce a splitting of the resonance in the circuit.

This defect is remedied by showing how dependent sources

may be used for this example in place of independent smmces.
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Fig. 1. Lines a and b are coupled by parasitic. The two lines may be
oriented at arbitrary angles to one another.

The predicted and experimental results then agree, except for

a 150 MHz frequency shift.

II. DERIVATION OF THE ALGORITHM

The algorithm is explained in this section. Assume that

we have two transmission lines, labeled a and b. See Fig.

1. The lines may be arbitrarily oriented with respect to one

another as long as they lie in the same plane. These lines

are usually embedded in an MIC. We wish to calculate the

parasitic coupling between lines a and b. Specifically, we

wish to find the effect on line b from currents and voltages

existing on line a. The entire procedure can later be reversed

to calculate the effect on line a from currents and charges on

line b. The effect of the coupling will be modeled by placing

independent current and voltage sources on line b. The strength

of the sources is determined by the current and charge on line

a in the absence of coupling. In practice, the CAD program

is first run without coupling, and the voltages and currents are

found on the lines being examined. The independent voltage

and current sources are then calculated and inserted into the

circuit. The simulation is then run again.

The voltage and current on the two lines are given by

Vj (<~), 1~(<j) where ~ = a, b. MKS units are used throughout
this paper. The charge funit length on a line is denoted by

Pj (Cj). The rectangular coordinate system is defined to have
z in the vertical direction, The ground plane is at z = O;

the interface between the substrate and air is at z = h.

The relative dielectric constant of the substrate is denoted by

c.. Only single-layer, nonmagnetic substrates are considered
in this paper, although the algorithm could, in principle,

be generalized to any transmission line system for which a

Green’s function exists. Local coordinates along a line are

denoted by <G or <b In actually carrying out the integrals

derived in this paper, all local coordinates have to be converted

to rectangular coordinates.

We assume that the coupling is weak in the sense that

the currents and voltages on the two lines in isolation are

not changed dramatically when the coupling is included. It is

therefore possible to use the isolated current and voltage on

line a as a starting point for calculating the coupling. We also

assume that the width of the lines can be neglected. All of

the current and charge is lumped into an infinitesimally wide

element. This restriction can be lifted at the cost of increas-

ing the computational time. Assume that charge and current

distributions on line a are known in the absence of parasitic

coupling. They could be found, in practice, by running the

circuit simulator without any parasitic included. The charge

and current on the line are the source of electromagnetic fields.

These fields excite charges and currents on line b. In reality,

there is then an influence back on line a from line b. We ignore

this complication because of our assumption of weak coupling:

It is more convenient to work with the vector potential A

and scalar potential V than with the electromagnetic fields

themselves. The voltage and vector potential due to the charges

and currents of line a influence line b. The charge and current

on line a produce potentials:

V(x, y) =
/

d<mp. ((.)
line a

. ge(<a; $, y)

1($, y) =
/

d<&Ja (<a)
line a

~ grrt((a; z,y). (1)

The unit vector G?a is in the direction of the line a. If the

line is not straight, ?. changes; this must be included in the

integration. The functions ge and gm are Green’s functions.

They are described in detail in the published literature [2], [3].

The units of ge are I/farad. The units of gm are henry slm2.

The Telegrapher’s equations for line b which include the

effect of line a are now derived. Imagine a small length of

line b: ~<b. Faraday’s law is applied to this section of line:

(2)

The surface of integration is shown in Fig. 2. The left side of

(2) gives the voltage difference between the two ends of the

line. The right side of (2) gives magnetic flux going through

the surface bounded by the ground plane and transmission line.

The source of this flux is due to the current on line b and the

incident flux from line a. The current on line b is related to

its flux by the transmission line’s self-inductance/unit length

lb. Equation (2) thereby becomes

~(~b + ($(b) – ~(~b)

= ‘jJ&~~((b) + A(~b)]6(b (3)

where A is the component of A+ given by (l), that is, the

component in the direction of line b: A = A . ~b. Care

must be taken with the signs in (3). The equation can be

confirmed by applying Kirchhoffs voltage law to the loop.

The self-inductance and the mutual coupling from the other

line are voltage drops. This is shown in Fig. 2, where the

vector potential A can be envisioned as a voltage source in

line b. Taking the limit of line b as 6(b + O gives the first

Telegrapher’s equation:

(4)
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Fig. 2. Surface of integration under line b. The dotted line is the path of the
line integral. Atso shown is the circuit schematic.

The second of the Telegrapher’s equations can be derived by

forcing conservation of charge on the second line. The charge

and current on line b must obey

(5)

The charge on the line is from two causes. First of all, there

is a self-capacitance funit length on the line: Q. Since there is

a voltage vb on the line, a charge/unit length

p = Cbvb (6)

is induced on line b. There is also an electric field near line

b from the charge in line a, as given by (l). Because of the

mutual capacitance between lines a and b, a voltage difference

between the two lines will result in charge being induced on

line b. The charge induced must be such to produce a voltage

to cancel the electric field from the first line. Otherwise, the

voltage given in (6) is not the total voltage on line b. Therefore,

there is also an amount of charge/unit length on line b:

() = ‘Cbv (7)

where V is given by (l). Putting (6) and (7) into (5) gives

(8)

This is the second of the Telegrapher’s equations.

Equations (4) and (8) must now be solved for Ib and vb.

This is accomplished by standard Green’s function methods.

The equations are first of all separated:

where

# = ‘W21bcb.

(9)

(lo)

Equations (9) are solved by standard techniques. It is found

. ~–7bl(–G

~–-ml(–(bl {11)

The formulas in (11) give the current and voltage on line b due

to the currents and charges on line a. In general, there is ;also

a nonzero, homogeneous solution to (9). It is always possible

that voltages and currents existed on line b from sources other

than line a. The procedure followed here for line a would

then have to be repeated for line b. Such charges and currents

would be a source of charge and current on line a. In getting

(11), it is assumed that each end of line b is terminated in its

characteristic impedance. If this is not the case, other wawes

will exist on the line from reflections off its ends. The effect of

these waves will be included when the circuit is resimuli~ted

in the CAD program.

Equation (11) is not in a convenient form for insertion

into a CAD program. Instead, we now calculate equivalent

independent voltage and current sources on line b that give

the same response at the ends of the line as that predicted

by (11). Once found, the current and voltage sources earl be

inserted into a CAD program in a straightforward manner. Let

the two ends of line b be denoted by <1Oand <UP. We now

imagine a line with a voltage source in series and a current

source in shunt, as shown in Fig. 3. The voltage source has
strength VO, and is located at a position <b = $V. The Current

source is of strength I., and is located at position <b = $1. To

the right of the two sources, (b >$1 and <b > sv, only a wave

moving to the right exists. Its voltage and current are given by

V+(cb)– ;Vo~–~b(<b–S”)

+ ;zcJoe–w(cb-sr)

~+((b) = & O
_V ~-7b(fb-sV)

+ ;loe–7b(cb–sl) [12)

where Zc is the characteristic impedance of line b. To the left

Of the sources, (b < SI and (b < sv, there k Only a wave

going to the left. Its voltage and current are given by

v–((b) = jvoe~b(~b–’v)

+ ~ZCIOeTb(fb-s’)

~-(<b) = &oeTb((b-sV)

i
— #oe7b(Cb-s’). 1(13)

The sources V. and 10 are required to give the same voltage

and current at the ends of the lines as is predicted by (11).

Matching (11) with (12) and (13) at (b = (I. and cb = <UP
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Fig. 3. Transmission line with independent source and independent

gives

1~.& =D
/

d<~{y~v((~)
line b

. cosh[~b(<b – SV)] – jUA(<b)

. sinh[’yb(~6 – Sv)]} (14)

where

D=
1

(15)
cosh[~b(sv – S1)] “

zb is the characteristic impedance of line b. Equation (14) is

the final, desired equation.

To summarize, the current and charge on line a are first

calculated without parasitic coupling. Equivalent independent

voltage and current sources on line b can then be calculated,

which approximately give the effect of coupling due to line a.

These current and voltage sources can then be inserted into a

CAD program if desired.

III. EXAMPLE OF Two COUPLED STUBS

In this section, the algorithm is applied to a simple stub

filter structure. The circuit is shown in Fig. 4. The structure has

been studied extensively [1], and is known to be sensitive to

parasitic coupling. The circuit was built on alumina substrate,

with G. = 9.6, substrate thickness h = 125 pm, and line widths

of 122 #m. This makes the characteristic impedances of all

lines close to 50 Q. The stub lengths are 2.921 mm. The

separation between the stubs was varied, with experimental
values ranging from O to 757 ~m. Separation is defined to be

the center-to-center distance.

The predicted performance for the circuit agrees with the

measured results, except for IS21 I near 10 GHz. The separation

between the stubs is 757 pm. The theoretical results were

calculated using a commercially available microwave circuit

program [4], in which no parasitic coupling between lines

was included. The substrate was assumed to be lossless;

the lines were made of gold, and were 1.5 ~m thick. The

discrepancy in ISZ1I near 10 GHz appears as a “double-dip” in

the experimental results, but not the simulated. This region is

shown in Fig. 5. Such a splitting of a resonance is characteristic

Fig. 4.

~ .ep.s.ration *

Double-stub filter structure to be analyzed for parasitic.

O dB

15211

-80 dB

8 GHz 12 GHz

. . . . . . . . . . . . Experimental Results

Simulated Results

Fig. 5. Theoretical values with no coupling versus measured

ISZI \. A discrepancy is noted near 10 GHz in [Sz] 1.
values fol

of coupled resonators. Parasitic coupling between the stubs is

therefore suspected.

It is, first of all, necessary to calculate the voltage and

current without coupling in order to implement the algorithm

described in the previous section. We do so at the resonance

of the stubs, where the parasitic coupling is expected to be

important. At resonance, the stubs are 1/4 of a wavelength

long; they appear as shorts to the main line. It is therefore

assumed that the incident wave from port 1 is entirely reflected
back. Furthermore, a current and voltage exist on the left stub.

They are given by

I(<) = Im
sin[fL(< + <.)]

sin [/3. <s]

v(<) = V&!#yl. (16)

The wavenumber is /3.. The stub length is <~. The ends of the

stub are at < = O and ~ = – <s. The maximum current lm

occurs at the beginning of the stub. The maximum voltage Vm

occurs at the end of the stub. The current and voltage are not

independent, but are related by the Telegrapher’s equations
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Fig. 6. Schematic of the double-stub structure with independent parasitic
sources in the middle of the right stub.

These give

Vm = –jZJm (17)

where Zc is the characteristic impedance of the stub.

It is desired to find the S-parameters for the circuit with

independent voltage and current sources placed in the right

stub. It first must be decided where the independent sources

areto replaced. The choice is somewhat arbitrary. We placed

the sources in the middle of the right stub, as shown in

Fig. 6. The strengths of the sources are calculated by using

(14). The amplitude of the current and voltage in the left

stub are determined by assuming 1 W of incident, average

power from port 1. This sets 1~ = 2/@ and Vm =

–j2m V, where Im and Vm are the complex amplitude

of the current and charge on the left stub, as in (16). The

integrals to determine the voltage and current source were

numerically evaluated using Simpson’s rule in two dimensions.

Ten steps in each directions gave accuracy comparable with

the approximate Green’s functions being used [3], about three

digits for the present problem. The current and voltage sources

were determined to’ be V. = 0.00607 + jO.044 V and 10 =

–0.000817 + jO.000300 A.

The S-parameters are found by examining the power com-

ing out of ports 1 and 2. A circulator was inserted at port

1 in order to get isolation between the input and output

directions. The magnitude of S21 is shown in Fig. 7, where

the independent sources have been inserted. Note that the

strength of the sources was not varied with frequency. It was

felt that this would lead to a very small change in the fixed

results. The insertion of the sources have brought the curve up

substantially. The designer can see that parasitic coupling is

a problem for this circuit. The splitting of the resonance has

not, however, been modeled. The reason for this is that it is

not possible to change a linear circuit’s response by inserting

independent sources; only dependent sources can change the

nature of the filter’s response curve.

Q d?l

1s21/

-60 dB

8 GHz 12 GHz

. 0000 . . . . . . . . . . . . ❑ Experimental Results

Simulated Results

Fig. 7. Independent source results versus experimental points for IS21 I near
10 GHz.

The first attempt at remedying this problem was to repllace

the independent sources by dependent ones. The problem is

that there are a number of possible choices for dependent

sources, depending on what one wants for the control variable,

and where that variable should be measured. For example,

should a dependent voltage source be a current- or voltage-

controlled source, or perhaps some combination of the two?

Different choices lead to different answers. For this particular

problem, we found a way to make the method work. It is

important that the dependent sources retain the symmetry of

the underlying geometry. For example, coupling between the

middle of each stub would keep the right symmetry. However,

we then do not know if we want current or voltage control.

At the ends of the stubs, we know the current is zero. We

therefore must have a voltage-controlled source if we couple

the ends of the lines. The obvious choice is a capacitor. The

beginning of the stubs has almost zero voltage at resonance.

We therefore must have current-controlled sources if we couple

to the beginning of the stubs. We therefore chose a mutual

inductance.

We therefore placed a dependent voltage source at the ends

of the stubs, a mutual capacitor; and a dependent current

source at the beginning of the stubs, a mutual inductor. We can

determine the value of the capacitor and inductor by requiring

that the strength of the dependent sources be the same at the

independent sources.

Equation (14) must be modified if independent sources are

going to be inserted at the beginning and end of the right stub.

This is because the parameter D becomes arbitrarily larg,e if

the two sources are placed a quarter of a wavelength apart,

as is the case for the stubs at resonance. We therefore need

to modify (14) for this case. The derivation of the previous

section is modified by assuming that line b is open at one pnd

and shorted at the other end. The length of the line is 1. A series

voltage source is placed at < = O, and a shunt current source is

placed at < = 1. See Fig. 8. Standard transmission line theory
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predicts the strength of the voltage and current sources as

VO = V(<) COS(BC) + jzo sWO

10= -1(() Cos[p(( - 1)]

+ *v(() sin[p(< – 01 (18)

where V(<) and 1(() are the voltage and current on the line

produced by V. and 10. The voltage and current on the line

are in the form of a TEM mode. It is desired to come up

with the “best” value of VO and 10 when a wave is incident

from the other line. The stub is about a quarter wavelength

long. Therefore, if we pick VO to give the correct voltage at

< = 1, we should have an accurate solution along the entire
stub. Similarly, we require the current source 10 at the end

of the’ stub to give the correct current at the beginning of the

stub, ( = O. We therefore require (18) to be true at ( = 1 for

the voltage source and < = O for the current source:

Vo % v(1) Cos(pl)

+ jZOl(l) sin(~l)

I. z –I(l). (19)

We can neglect the term with 1(1) in it for the calculation of

V.. This is because the current will be much smaller than the

voltage at the open end V(l). Then

Vo w v(l) Cos(pl)

I. z –I(l). (20)

We still need to find the V(l) and 1(1) induced on the stub

from the voltage and current on the first stub. Equations (9)

are solved for Vb and Ib. Line b is now shorted at <b = O and

open at (b = 1.By using standard techniques, the solution is

found to be

1

Vb(<b)=
/[

jw 8A

o ‘<0 -v((o) + ~fi 1

“ Gd(o;b) (21)

where the Green’s functions Gu and G1 are given by

G =/3 cos[,fl((o – 1)] sin(~(~)
u

Cos(pl)

()<~b<[o

_ ~cos[~((~ - 1)] sin(fl(o)
.

Cos(pl)

(0<(6<1

G,= pcos[p(&l - 1)] Cos(o(,)

cos(~l)

o<~b<~o

_ ~sin[~(l - <b)] sin(~<CI)
.

Cos(pl)

<O<[b<l. (22)

Shorted End Open End

V.

+

I

Fig. 8. Current and voltage sources placed at the ends of a line, one end of
which is shorted, the other open.

Equations (21) are used to find V. and 10 in (20). The final

expressions for the sources are

/

1

V. = d~o[–/?V(<o) sin(/?<o)

-O J2JA(<O) COS(B<I))]
1

I. =
/[

d<o #v((o) cos[/?((o – 1)]
o

1
+ ~A(<o) sin[(3(<0 – 1)] . (23)

Finally, we find the mutual capacitance Cm and mutual

inductance M by

(24)

It should be noted that complex values of capacitance and

inductance will often result from this procedure. This reflects

the fact that there is a phase dependence in the Green’s

functions. Inserting a complex capacitance or inductance can

result in a violation of energy conservation. This should

not cause concern as the method is approximate and the

discrepancy in energy is small. Stated more mathematically,

the error in energy is second order in the small expansion

parameter of the coupling, and the theory is only accurate to

first order in the coupling.

Fig. 9 shows the results of the simulation when the calcu-

lated C’m and M are used for a stub separation of 757 ~m. The

agreement is seen to be good. Values of C’m = 1.30 x 10– 15–

j2.14 x 10-16 F and M = 3.22 x 10-12 – j5.36 x 10–13 H
were used. (The inductance was given an extra 180° phase

shift from the value listed here when inserted into the CAD

program. This is because the mutual inductance in the circuit

program has a voltage sign convention opposite that given

by Faraday’s law.) If the simulated results are shifted by 150

MHz, the curves lie on top of one another. The agreement

is also good for smaller separations. Fig. 10 shows the case

for 249 ,um apart, corresponding to a separation of two

substrate thicknesses. The calculated values of inductance and

capacitance are Cm = 3.80 x 10–15 – 12.15 x 10–16 F and

M = 9.37x 10–12 – 15.38 x 10–13 H. (The actual inductance

put in the CAD program was again shifted by 180° to give the

correct sign convention for mutual inductance.) The integrals
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0 dB
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Fig. 9. Comparison of experimental and theoretical values for IS21 I with
mutual capacitance and inductance included. A separation of 757 pm is used.
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Fig. 10. Comparison of experimental and theoretical values for IS2 I I with
mutual capacitance and inductance included. A separation of 249 pm is used.

were calculated using a two-dimensional Simpson’s rule. Ten

steps in each dimension were found to be adequate to assure

convergence.

IV. CONCLUSIONS

A method has been developed to include parasitic coupling

effects between transmission lines in MIC’S. The method

uses the voltages and currents on the lines without coupling

to calculate independent voltage and current sources. These

sources can then be inserted into the CAD program.

A specific example of a double tee was examined. The

algorithm correctly gave the coupling strength, It did not give

the splitting of the resonance. This was accounted fo~ by

modifying the algorithm to calculate dependent sources; in

this case, they were mutual inductances and capacitances. The

agreement between experimental and simulated results was

reasonable.
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