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An Efficient Algorithm for the Calculation of
Parasitic Coupling Between Lines in MIC’s

John M. Dunn, Lincoln Cole Howard, and Kent Larson

Abstract—A new algorithm is developed to calculate parasitic
coupling between transmission lines in an efficient manner. The
algorithm works by using the currents and voltages on the lines
in the absence of parasitics to calculate independent voltage
and current sources which then give the approximate coupling
strength between the various lines. These sources are easy to
place in a CAD circuit program. The algorithm is demonstrated
on a double-stub filter structure. The observed splitting of the
resonance, for this particular example, is modeled by using
dependent sources, as calculated from the independent sources.

I. INTRODUCTION

ARASITIC coupling is becoming more of a concern in

microwave integrated circuits (MIC’s) as packing densi-
ties of components are increased and frequencies are pushed
higher. By parasitic coupling, we mean unintended electro-
magnetic coupling between two components in the circuit.
Such coupling can have a deleterious effect on the circuit’s
performance.

The effects of parasitic coupling are not included in com-
mercially available circuit simulators at this time. These sim-
ulators are based on microwave network theory concepts, and
they therefore only include the interaction between two circuit
elements if it is specified by the designer. For example, two
parallel transmission lines are assumed not to be coupled
unless the designer explicitly puts a coupled line model into the
circuit. The designer is faced with two problems when trying to
include parasitic coupling effects in the circuit design. The first
issue is how to determine the strength of the coupling between
two elements; the second issue is how to incorporate this
effect back into the computer-aided design (CAD) software
in a reasonable manner.

One approach that has been tried with some success is to
numerically calculate the coupling between the two elements.
Typically, the designer inputs the geometry of the two elements
into one of the commercially available, full-wave, numerical
simulators. The designer obtains an S -parameter file for
the frequencies of interest, which is then inserted into the

Manuscript received September 18, 1991; revised October 8, 1992. This
work was supported by the National Science Foundation under Contract ECS-
8910381.

J. M. Dunn and L. C. Howard are with the Department of Electrical and
Computer Engineering, University of Colorado, Boulder, CO 80309.

K. Larson is with the Belvoir Research, Development, and Engineering
Center, Department of the Army, Fort Belvoir, VA 22060.

IEEE Log Number 9208341.

circuit simulator. The coupling effect between the two ele-
ments is then included. These simulators numerically calculate
Maxwell’s equations. They, therefore, potentially can include
all electromagnetic effects. This goal must be tempered by
realistic numerical accuracy limitations, and possible system
limitations of the specific simulator used. This approach has
two major problems. The first is that circuit simulators are
computationally very intensive. Typically, these simulalors
take several minutes of computation time for each frequency
point of interest. The designer is therefore discouraged from
calculating parasitic coupling in this manner. The second prob-
lem is that the designer gets very little intuitive feeling about
how important the coupling is to the circuit’s performance.
This is a problem if one is trying to correct a parasitics problem
or determine its origin in the circuit.

In this paper, we develop an algorithm for calculating
parasitic coupling between transmission line elements. The
main advantages of the algorithm are that it is quick to
implement, and can give the designer an intuitive feeling of the
levels of coupling to expect. The formulas are approximate,
and therefore subject to a number of limitations. First of all,
the algorithm is only developed for microstrip transmission
lines. It should be possible to extend it to other transmission
line structures. The calculation of coupling between structures
which are not transmission lines is outside the scope of the
algorithm. Second of all, the algorithm assumes that the lines
are far enough apart that the coupling is a small effect.
Parasitic is considered here to be a perturbation on the circuit’s
performance. By this, we mean that the currents and charges
on the two lines without coupling included can be used as an
ititial guess for insertion into the algorithm. This is usually
the case in realistic examples. If the coupling is so strong
that this assumption is not true, the algorithm may behave
poorly.

The algorithm is developed in the next section. It is based
on transmission line theory and the inclusion of first-order
coupling effects. The effect of coupling is included in the
CAD program by inserting independent voltage and current
sources in the transmission lines. The third section of the paper
demonstrates the algorithm on a coupled-stub structure. This
example has been discussed a great deal in the literature. It is
known to be a good example of parasitic coupling effects [1].
The algorithm gives coupling of the right strength. It does not,
however, produce a splitting of the resonance in the circuit.
This defect is remedied by showing how dependent sources
may be used for this example in place of independent sources.
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Fig. 1. Lines a and b are coupled by parasitics. The two lines may be

oriented at arbitrary angles to one another.

The predicted and experimental results then agree, except for
a 150 MHz frequency shift.

II. DERIVATION OF THE ALGORITHM

The algorithm is explained in this section. Assume that
we have two transmission lines, labeled o and b. See Fig.
1. The lines may be arbitrarily oriented with respect to one
another as long as they lie in the same plane. These lines
are usually embedded in an MIC. We wish to calculate the
parasitic coupling between lines a and b. Specifically, we
wish to find the effect on line b from currents and voltages
existing on line a. The entire procedure can later be reversed
to calculate the effect on line o from currents and charges on
line 6. The effect of the coupling will be modeled by placing
independent current and voltage sources on line b. The strength
of the sources is determined by the current and charge on line
o in the absence of coupling. In practice, the CAD program
is first run without coupling, and the voltages and currents are
found on the lines being examined. The independent voltage
and current sources are then calculated and inserted into the
circuit. The simulation is then run again.

The voltage and current on the two lines are given by
V,(¢,), I, (¢;) where j = a,b. MKS units are used throughout
this paper. The charge/unit length on a line is denoted by
p;(¢;). The rectangular coordinate system is defined to have
z in the vertical direction. The ground plane is at z = 0
the interface between the substrate and air is at z = h.
The relative dielectric constant of the substrate is denoted by
€. Only single-layer, nonmagnetic substrates are considered
in this paper, although the algorithm could, in principle,
be generalized to any transmission line system for which a
Green’s function exists. Local coordinates along a line are
denoted by (, or (; In actually carrying out the integrals
derived in this paper, all local coordinates have to be converted
to rectangular coordinates.

We assume that the coupling is weak in the sense that
the currents and voltages on the two lines in isolation are
not changed dramatically when the coupling is included. It is
therefore possible to use the isolated current and voltage on
line ¢ as a starting point for calculating the coupling. We also
assume that the width of the lines can be neglected. All of
the current and charge is lumped into an infinitesimally wide
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element. This restriction can be lifted at the cost of increas-
ing the computational time. Assume that charge and current
distributions on line a are known in the absence of parasitic
coupling. They could be found, in practice, by running the
circuit simulator without any parasitics included. The charge
and current on the line are the source of electromagnetic fields.
These fields excite charges and currents on line b. In reality,
there is then an influence back on line a from line b. We ignore
this complication because of our assumption of weak coupling.
It is more convenient to work with the vector potential A
and scalar potential V' than with the electromagnetic fields
themselves. The voltage and vector potential due to the charges
and currents of line ¢ influence line b. The charge and current
on line a produce potentials:

V) = [ depulC)
- ge(Cas 2, y)
Aw,y) = /1 ()
 gmlCas 7, ). )

The unit vector Z, is in the direction of the line a. If the
line is not straight, Z, changes; this must be included in the
integration. The functions ge and gm are Green’s functions.
They are described in detail in the published literature [2}, [3].
The units of ge are 1/farad. The units of gm are henrys/m?.
The Telegrapher’s equations for line b which include the
effect of line o are now derived. Imagine a small length of
line b: 6(p. Faraday’s law is applied to this section of line:

?{E-d@:—jw/ﬁ'd@. )

The surface of integration is shown in Fig. 2. The left side of
(2) gives the voltage difference between the two ends of the
line. The right side of (2) gives magnetic flux going through
the surface bounded by the ground plane and transmission line.
The source of this flux is due to the current on line b and the
incident flux from line a. The current on line b is related to
its flux by the transmission line’s self-inductance/unit length
ly. Equation (2) thereby becomes

Vo(Co + 6Gs) — Vi (Cp)
= —jw(lpIp () + A(G)]6C 3

where A is the component of A given by (1), that is, the
component in the direction of line b: A = A - 3. Care
must be taken with the signs in (3). The equation can be
confirmed by applying Kirchhoff’s voltage law to the loop.
The self-inductance and the mutual coupling from the other
line are voltage drops. This is shown in Fig. 2, where the
vector potential A can be envisioned as a voltage source in
line b. Taking the limit of line b as 6, — O gives the first
Telegrapher’s equation:

g—? Gl Ty(G) = —jwA(G). @
b
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Fig. 2. Surface of integration under line b. The dotted line is the path of the
line integral. Also shown is the circuit schematic.

The second of the Telegrapher’s equations can be derived by
forcing conservation of charge on the second line. The charge
and current on line b must obey

oL, .

=t =0. 5
3% + jwps(Cp) &)
The charge on the line is from two causes. First of all, there
is a self-capacitance/unit length on the line: ¢;. Since there is
a voltage V}; on the line, a charge/unit length

p=cVp (6)

is induced on line b. There is also an electric field near line
b from the charge in line a, as given by (1). Because of the
mutual capacitance between lines @ and b, a voltage difference
between the two lines will result in charge being induced on
line b. The charge induced must be such to produce a voltage
to cancel the electric field from the first line. Otherwise, the
voltage given in (6) is not the total voltage on line b. Therefore,
there is also an amount of charge/unit length on line b:

p=—cV Q)
where V is given by (1). Putting (6) and (7) into (5) gives

o1,

G

This is the second of the Telegrapher’s equations.

Equations (4) and (8) must now be solved for I; and Vj.
This is accomplished by standard Green’s function methods.
The equations are first of all separated:

+ jwes Vi = jwepV. ®)

%V 9 . 0A 9
Y 2y — o LerV

ez Ve =TIt

821, v

Cb 20 = jwes sl — w2eA 9
e Volo =jwesge = wey )

where
'73 = —w?lycp. (10)
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Equations (9) are solved by standard techniques. It is found

_M jw oA
v(o) =2 /1 g [V(cb>+ e ch
. e-%lC-CH
) 1 J oV
1(Q) =2 /1 nebdcb[ AG) + 5 acb]
. e"YblC"CbL (11)

The formulas in (11) give the current and voltage on line b due
to the currents and charges on line a. In general, there is also
a nonzero, homogeneous solution to (9). It is always possible
that voltages and currents existed on line b from sources other
than line a. The procedure followed here for line @ would
then have to be repeated for line b. Such charges and currents
would be a source of charge and current on line a. In getting
(11), it is assumed that each end of line b is terminated in its
characteristic impedance. If this is not the case, other waves
will exist on the line from reflections off its ends. The effect of
these waves will be included when the circuit is resimulated
in the CAD program.

Equation (11) is not in a convenient form for insertion
into a CAD program. Instead, we now calculate equivalent
independent voltage and current sources on line b that give
the same response at the ends of the line as that predicted
by (11). Once found, the current and voltage sources can be
inserted into a CAD program in a straightforward manner. Let
the two ends of line b be denoted by (), and (yp. We now
imagine a line with a voltage source in series and a current
source in shunt, as shown in Fig. 3. The voltage source has
strength Vg, and is located at a position (5 = sy. The current
source is of strength I, and is located at position {, = s7. To
the right of the two sources, (, > sy and (s > sy, only a wave
moving to the right exists. Its voltage and current are given by

1
V+(Cb)— §Voe—’Yb(Cb—SV)

+ }_choe"’Yb(Cb—SI)
2

1
—v{({s—5v)
57, %

+ lloe—’Yb(Cb—SI)
2

IT(G) =

(12)

where Z, is the characteristic impedance of line b. To the left
of the sources, {, < 87 and ( < sy, there is only a wave
going to the left. Its voltage and current are given by

1
V= (G) = Svpen @)
+ %ZCIOe’Yb(Cb—SI)

I (&) = =

— = V.eve(C—sv)
ZZCVOe

— %Ioe’)/b(Cb_SI). (13)

The sources V; and I are required to give the same voltage
and current at the ends of the lines as is predicted by (11).
Matching (11) with (12) and (13) at {, = (o and ( = Cup
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Fig. 3. Transmission line with independent source and independent

gives

W=D ; deb{’YbV(Cb)

- sinh[vp(( — s1)] — JwA(G)
- cosh[v4(Gs — s1)]}

InZy =D dG {7V ()

line b

- cosh[vp(¢p — sv)] — JwA(G)

- sinh[y(G — sv)]} (14)

where
_ 1
cosh[vs(sv — s1)] '

(15)

Zy is the characteristic impedance of line b. Equation (14) is
the final, desired equation.

To summarize, the current and charge on line a are first
calculated without parasitic coupling. Equivalent independent
voltage and current sources on line b can then be calculated,
which approximately give the effect of coupling due to line a.
These current and voltage sources can then be inserted into a
CAD program if desired.

III. ExaMPLE OF TwWO COUPLED STUBS

In this section, the algorithm is applied to a simple stub
filter structure. The circuit is shown in Fig. 4. The structure has
been studied extensively [1], and is known to be sensitive to
parasitic coupling. The circuit was built on alumina substrate,
with €, = 9.6, substrate thickness h = 125 pm, and line widths
of 122 ym. This makes the characteristic impedances of all
lines close to 50 Q. The stub lengths are 2.921 mm. The
separation between the stubs was varied, with experimental
values ranging from O to 757 um. Separation is defined to be
the center-to-center distance.

The predicted performance for the circuit agrees with the
measured results, except for |S2; | near 10 GHz. The separation
between the stubs is 757 pm. The theoretical results were
calculated using a commercially available microwave circuit
program [4], in which no parasitic coupling between lines
- was included. The substrate was assumed to be lossless;
the lines were made of gold, and were 1.5 ym thick. The
discrepancy in |S21| near 10 GHz appears as a “double-dip” in
the experimental results, but not the simulated. This region is
shown in Fig. 5. Such a splitting of a resonance is characteristic
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Fig. 4. Double-stub filter structure to be analyzed for parasitics.
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Fig. 5. Theoretical values with no coupling versus measured values for
|S21]. A discrepancy is noted near 10 GHz in |Sa1].

of coupled resonators. Parasitic coupling between the stubs is
therefore suspected.

It is, first of all, necessary to calculate the voltage and
current without coupling in order to implement the algorithm
described in the previous section. We do so at the resonance
of the stubs, where the parasitic coupling is expected to be
important. At resonance, the stubs are 1/4 of a wavelength
long; they appear as shorts to the main line. It is therefore
assumed that the incident wave from port 1 is entirely reflected
back. Furthermore, a current and voltage exist on the left stub.
They are given by

sin|[Be(¢ + (s
10) — 1, SnlB(C 4 )
sin[Be (]
sin[fBe(]
V() =Vin—r7%. 16
(C) mSIH[ﬂeCs] ( )
The wavenumber is .. The stub length is ;. The ends of the
stub are at { = 0 and { = —(;. The maximum current I,

occurs at the beginning of the stub. The maximum voltage V,,,
occurs at the end of the stub. The current and voltage are not
independent, but are related by the Telegrapher’s equations
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Fig. 6. Schematic of the double-stub structure with independent parasitic
sources in the middle of the right stub.

These give

Vin = —jZclm, ¢)]
where Z. is the characteristic impedance of the stub.

It is desired to find the S-parameters for the circuit with
independent voltage and current sources placed in the right
stub. It first must be decided where the independent sources
are to be placed. The choice is somewhat arbitrary. We placed
the sources in the middle of the right stub, as shown in
Fig. 6. The strengths of the sources are calculated by using
(14). The amplitude of the current and voltage in the left
stub are determined by assuming 1 W of incident, average
power from port. 1. This sets I, = 2/ V50 and V,, =
- j2\/m V, where I, and V,,, are the complex amplitude
of the current and charge on the left stub, as in (16). The
integrals to determine the voltage and current source were
numerically evaluated using Simpson’s rule in two dimensions.
Ten steps in each directions gave accuracy comparable with
the approximate Green’s functions being used [3], about three
digits for the present problem. The current and voltage sources
were determined to be Vy = 0.00607 + 70.044 V and Iy =
—0.000817 4 j0.000300 A.

The S-parameters are found by examining the power com-
ing out of ports 1 and 2. A circulator was inserted at port
1 in order to get isolation between the input and output
directions. The magnitude of Sy; is shown in Fig. 7, where
the independent sources have been inserted. Note that the
strength of the sources was not varied with frequency. It was
felt that this would lead to a very small change in the fixed
results. The insertion of the sources have brought the curve up
substantially. The designer can see that parasitic coupling is
a problem for this circuit. The splitting of the resonance has
not, however, been modeled. The reason for this is that it is
not possible to change a linear circuit’s response by inserting
independent sources; only dependent sources can change the
nature of the filter’s response curve.
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Fig. 7. Independent source results versus experimental points for |S21| near

10 GHz:

The first attempt at remedying this problem was to replace
the independent sources by dependent ones. The problem is
that there are a number of possible choices for dependent
sources, depending on what one wants for the control variable,
and where that variable should be measured. For example,
should a dependent voltage source be a current- or voltage-
controlled source, or perhaps some combination of the two?
Different choices lead to different answers. For this particular
problem, we found a way to make the method work. It is
important that the dependent sources retain the symmetry of
the underlying geometry. For example, coupling between the
middle of each stub would keep the right symmetry. However,
we then do not know if we want current or voltage control.
At the ends of the stubs, we know the current is zero. We
therefore must have a voltage-controlled source if we couple
the ends of the lines. The obvious choice is a capacitor. The
beginning of the stubs has almost zero voltage at resonance.
We therefore must have current-controlled sources if we couple
to the beginning of the stubs. We therefore chose a mutual
inductance. »

We therefore placed a dependent voltage source at the ends
of the stubs, a mutual capacitor; and a dependent current
source at the beginning of the stubs, a mutual inductor. We can
determine the value of the capacitor and inductor by requiring
that the strength of the dependent sources be the same at the
independent sources.

Equation (14) must be modified if independent sources are
going to be inserted at the beginning and end of the right stub.
This is because the parameter D becomes arbitrarily large if
the two sources are‘placed a quarter of a wavelength apart,
as is the case for the stubs at resonance. We therefore need
to modify (14) for this case. The derivation of the previous
section is modified by assuming that line b is open at one end
and shorted at the other end. The length of the line is [. A series
voltage source is placed at { = 0, and a shunt current source is
placed at ( = . See Fig. 8. Standard transmission line theory
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predicts the strength of the voltage and current sources as

Vo =V(¢) cos(8¢) + 7 Zo sin(BC)
Iy =—1I(¢) cos[B(C — )]

+ = V(¢)sin[B(¢ ~ 1) (18)
0

where V(¢) and I(¢) are the voltage and current on the line
produced by Vy and Ip. The voltage and current on the line
are in the form of a TEM mode. It is desired to come up
with the “best” value of Vy and Iy when a wave is incident
from the other line. The stub is about a quarter wavelength
long. Therefore, if we pick Vj to give the correct voltage at
¢ = I, we should have an accurate solution along the entire
stub. Similarly, we require the current source Iy at the end
of the stub to give the correct current at the beginning of the
stub, ¢ = 0. We therefore require (18) to be true at { = { for
the voltage source and ¢ = 0 for the current source:

Vo = V(1) cos(pl)
+ 3 ZoI(1)sin(80)

Io ~—I(I). (19)

We can neglect the term with () in it for the calculation of
Vo. This is because the current will be much smaller than the
voltage at the open end V(I). Then

Vo = V(I) cos(Bl)

Io ~—I(I). (20)

We still need to find the V(I) and I(I) induced on the stub
from the voltage and current on the first stub. Equations (9)
are solved for V; and I,. Line b is now shorted at ¢, = 0 and
open at {;, = [. By using standard techniques, the solution is
found to be

Vo (Ge) = /Ol déo [—V(Co) + J_w%}

5 oG,
. GU(CO;CI))
l
Zolo(cs) = j /0 i {—V(Co) +
- G105 Gp)

o2
B2 0Go
(21)

where the Green’s functions G, and G are given by

_ Beoslf(go - Dlsin(BGy)
cos(8l)
0 <G <o

_ BeoslB(G — D] sin(G)
cos(Bl)
Co <G <l

Gy = B cos[B(¢o — )] cos(BG)
cos( 1)
0<G <o

_ Bsinfgi - G)]sin(8)
cos(Bl)
Go < G <.

Gy

(22)
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Fig. 8. Current and voltage sources placed at the ends of a line, one end of
which is shorted, the other open.

Equations (21) are used to find V4 and I in (20). The final
expressions for the sources are

1
Vo = /0 dCo[—BV (¢o) sin(Bo)
— jwA(o) cos(B¢o)]
1 .
0= [ d [-”Z-f—wco)cosw(co 1)
+ ZiA(go)sin[ﬂ(go—z)] . (23)
0

Finally, we find the mutual capacitance C,, and mutual
inductance M by

Vo
M=—-
Jw|ln|
Iy
Cp = = . 24
m jw]Vm| ( )

It should be noted that complex values of capacitance and
inductance will often result from this procedure. This reflects
the fact that there is a phase dependence in the Green’s
functions. Inserting a complex capacitance or inductance can
result in a violation of energy conservation. This should
not cause concern as the method is approximate and the
discrepancy in energy is small. Stated more mathematically,
the error in energy is second order in the small expansion
parameter of the coupling, and the theory is only accurate to
first order in the coupling.

Fig. 9 shows the results of the simulation when the calcu-
lated C,,, and M are used for a stub separation of 757 pm. The
agreement is seen to be good. Values of C,,, = 1.30 x 1071° —
§2.14 x 10718 Fand M = 3.22 x 10712 — j5.36 x 10"1* H
were used. (The inductance was given an extra 180° phase
shift from the value listed here when inserted into the CAD
program. This is because the mutual inductance in the circuit
program has a voltage sign convention opposite that given
by Faraday’s law.) If the simulated results are shifted by 150
MHz, the curves lie on top of one another. The agreement
is also good for smaller separations. Fig. 10 shows the case
for 249 pm apart, corresponding to a separation of two
substrate thicknesses. The calculated values of inductance and
capacitance are Cy,, = 3.80 x 1071% — 12,15 x 1076 F and
M =9.37x 10712 - J5.38 x 10713 H. (The actual inductance
put in the CAD program was again shifted by 180° to give the
correct sign convention for mutual inductance.) The integrals
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Fig. 9. Comparison of experimental and theoretical values for |S21| with
mutual capacitance and inductance included. A separation of 757 pm is used.
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Fig. 10. Comparison of experimental and theoretical values for | S21| with
mutual capacitance and inductance included. A separation of 249 um is used.

were calculated using a two-dimensional Simpson’s rule. Ten
steps in each dimension were found to be adequate to assure
convergence.

IV. CONCLUSIONS

A method has been developed to include parasitic coupling
effects between transmission lines in MIC’s. The method
uses the voltages and currents on the lines without coupling
to calculate independent voltage and current sources. These
sources can then be inserted into the CAD program.

A specific example of a double tee was examined. The
algorithm correctly gave the coupling strength. It did not give
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the splitting of the resonance. This was accounted for by
modifying the algorithm to calculate dependent sources; in
this case, they were mutual inductances and capacitances. The
agreement between experimental and simulated results was
reasonable.
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